An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery.
نویسندگان
چکیده
The eukaryotic cell cycle displays a degree of plasticity in its regulation; cell cycle progression can be transiently arrested in response to environmental stresses. While the signaling pathways leading to cell cycle arrest are beginning to be well understood, the regulation of the release from arrest has not been well characterized. Here we show that DHH1, encoding a DEAD-box RNA helicase orthologous to the human putative proto-oncogene p54/RCK, is important in release from DNA-damage-induced cell cycle arrest at the G1/S checkpoint. DHH1 mutants are not defective for DNA repair and recover normally from the G2/M and replication checkpoints, suggesting a specific function for Dhh1p in recovery from G1/S checkpoint arrest. Dhh1p has been suggested to play a role in partitioning mRNAs between translatable and nontranslatable pools, and our results implicate this modulation of mRNA metabolism in the recovery from G1/S cell cycle arrest following DNA damage. Furthermore, the high degree of conservation between DHH1 and its human ortholog suggests that this mechanism is conserved among all eukaryotes and potentially important in human disease.
منابع مشابه
Binding of DEAD-box helicase Dhh1 to the 5'-untranslated region of ASH1 mRNA represses localized translation of ASH1 in yeast cells.
Local translation of specific mRNAs is regulated by dynamic changes in their subcellular localization, and these changes are due to complex mechanisms controlling cytoplasmic mRNA transport. The budding yeast Saccharomyces cerevisiae is well suited to studying these mechanisms because many of its transcripts are transported from the mother cell to the budding daughter cell. Here, we investigate...
متن کاملRad53 is essential for a mitochondrial DNA inheritance checkpoint regulating G1 to S progression
The Chk2-mediated deoxyribonucleic acid (DNA) damage checkpoint pathway is important for mitochondrial DNA (mtDNA) maintenance. We show in this paper that mtDNA itself affects cell cycle progression. Saccharomyces cerevisiae rho(0) cells, which lack mtDNA, were defective in G1- to S-phase progression. Deletion of subunit Va of cytochrome c oxidase, inhibition of F(1)F(0) adenosine triphosphatas...
متن کاملThe 70 kDa subunit of replication protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast.
The rfa1-M2 and rfa1-M4 Saccharomyces cerevisiae mutants, which are altered in the 70 kDa subunit of replication protein A (RPA) and sensitive to UV and methyl methane sulfonate (MMS), have been analyzed for possible checkpoint defects. The G1/S and intra-S DNA damage checkpoints are defective in the rfa1-M2 mutant, since rfa1-M2 cells fail to properly delay cell cycle progression in response t...
متن کاملThe Saccharomyces cerevisiae F-box protein Dia2 is a mediator of S-phase checkpoint recovery from DNA damage.
Cell-cycle progression is monitored by checkpoint pathways that pause the cell cycle when stress arises to threaten the integrity of the genome. Although activation of checkpoint pathways has been extensively studied, our understanding of how cells resume the cell cycle when the stress is resolved is relatively limited. In this study, we identify the Saccharomyces cerevisiae F-box protein Dia2 ...
متن کاملSuppression of spontaneous genome rearrangements in yeast DNA helicase mutants.
Saccharomyces cerevisiae mutants lacking two of the three DNA helicases Sgs1, Srs2, and Rrm3 exhibit slow growth that is suppressed by disrupting homologous recombination. Cells lacking Sgs1 and Rrm3 accumulate gross-chromosomal rearrangements (GCRs) that are suppressed by the DNA damage checkpoint and by homologous recombination-defective mutations. In contrast, rrm3, srs2, and srs2 rrm3 mutan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 167 1 شماره
صفحات -
تاریخ انتشار 2004